CI&T

A corrida para a criação do computador mais poderoso da história.

Físicos, engenheiros e cientistas da computação em todo o mundo estão tentando desenvolver diferentes tipos de computadores quânticos; maior desafio é a frágil natureza do quantum.

Os computadores quânticos são considerados máquinas incrivelmente poderosas capazes de resolver problemas extremamente complexos de forma muito mais rápida. Ainda não se sabe, contudo, qual seria a melhor maneira de fazê-los serem tão produtivos em larga escala. E muita gente se pergunta quem tem chances de ganhar essa corrida.

A expectativa é de que essas supermáquinas possam ajudar, por exemplo, a acelerar a cura de doenças, a descoberta de novos medicamentos e a desvendar os mais seguros sistemas criptografados.

Mas atualmente não há consenso sobre a melhor maneira de executar tais projetos nem como disponibilizar essas máquinas no mercado consumidor massificado.

Físicos, engenheiros e cientistas da computação em todo o mundo estão tentando desenvolver quatro diferentes tipos de computadores quânticos, a partir de partículas de luz, íons aprisionados, supercondutores ou centros de vacância com nitrogênio em diamantes.

Empresas como a IBM, Google, Rigetti, Intel e Microsoft são as líderes nessa corrida quântica.

Cada método tem seus prós e contras, mas o maior desafio é a frágil natureza do quantum.

O que é computação quântica

Em vez de usar “um” e “zero” em sequências longas, como na computação clássica, um bit quântico – ou qubit – usa as propriedades quase mágicas das partículas subatômicas.

Elétrons ou fótons, por exemplo, podem estar em dois estados ao mesmo tempo – um fenômeno chamado superposição. Como resultado, um computador de qubit pode fazer mais cálculos muito mais rapidamente que um computador convencional.

“Se você tem um computador de dois-qubits e você adiciona dois qubits, terá um computador de quatro qubits mas não vai dobrar a potência do computador – vai fazer com que ele cresça exponencialmente”, explica Martin Giles, chefe do escritório de São Francisco da MIT Technology Review.

Fonte: G1

Cristiane Tavolaro

Sou física, professora e pesquisadora do departamento de física da PUC-SP. Trabalho com Ensino de Física, atuando principalmente em ensino de física moderna, ótica física, acústica e novas tecnologias para o ensino de física. Sou membro fundadora do GoPEF - Grupo de Pesquisa em Ensino de Física da PUC-SP e co-autora do livro paradidático Física Moderna Experimental, editado pela Manole.

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *