Faça-se a luz.
Entenda o que é e como funciona o acelerador de partículas Sirius – a fábrica de luz de 1,8 bilhão de reais que vai revolucionar a ciência brasileira.
O acelerador, chamado Sirius, é a empreitada mais ambiciosa – e cara – da história da ciência brasileira. Orçado em R$ 1,8 bilhão, ele começou a ser idealizado em 2003, mas as obras só saíram do papel em 2014. Quando entrar em operação, em 2019, o Sirius será capaz de impulsionar elétrons a 1,07 bilhão de quilômetros por hora – quase a velocidade da luz. É o suficiente para ir de Londres a Nova York em 0,018 segundo. Toma essa, Concorde. Além de viajar nesse pique, cada elétron a bordo do Sirius vai atingir uma energia de 3 GeV – equivalente a ser submetido a um choque de 3 bilhões de volts (a tomada da sua casa tem tensão de, no máximo, 220 volts). Eletrizante.
Estilingue épico
Quanto maior a diferença de potencial entre dois pontos, com mais vontade os elétrons se deslocam de um ponto em direção ao outro. A rede elétrica da sua casa, como já dissemos, opera com uma diferença de potencial de no máximo 220 volts. No Linac, ela é de 80 mil volts – 727 vezes maior. Com um incentivo desses, os elétrons se lançam desesperadamente do filamento onde nasceram para a outra ponta de um tubo, e são lançados para fora com uma energia enorme.
Este é o acelerador linear. Veja seu tamanho em relação ao resto do Sirius no infográfico mais abaixo. (Yasmin Ayumi/Superinteressante)
No pique, eles passam para a próxima fase: outro tubo. Ele é bem maior, tem cor de cobre e parece uma engenhoca de Star Wars. No interior desse tubo – mantido num vácuo ainda mais vazio que o vácuo do espaço –, injeta-se uma onda eletromagnética com potência de 50 megawatts. É o suficiente para abastecer umas 8 mil casas. Ondas, você sabe, sobem e descem – têm cristas e vales. E os elétrons devem ser mantidos sempre na crista.
O princípio é o mesmo de surfar: se você pega a onda no ponto mais alto, ela te leva de carona e você ganha energia. Se você pega a onda no ponto mais baixo, toma um caldo. Os elétrons só conseguem alcançar a energia necessária para o tipo de experimento feito no Sirius se, ao longo de todo o trajeto, eles sempre pegarem a onda no ponto mais alto.
Depois de passar por esse segundo tubo, os elétrons já estão praticamente na velocidade da luz. É nesse ponto que eles saem do acelerador linear e passam a andar em círculos no Sirius. Eles dão voltas e mais voltas. O trecho final da jornada é uma estrutura chamada “anel de armazenamento”: um círculo com 518 metros de circunferência onde eles dão 580 mil voltas por segundo.
O objetivo dessa corrida maluca é simples: se você pegar uma toalha molhada, segurá-la por uma ponta e girá-la no ar, a água em excesso vai espirrar para os lados, molhando todo o ambiente. Quando elétrons acelerados fazem uma curva, eles também deixam espirrar uma coisa: radiação. No Sirius, existem ímãs que forçam os elétrons a fazer curvas o tempo todo. Por tabela, eles liberam radiação o tempo todo.
É essa radiação extremamente intensa – que consiste em vários tipos de “luz”, da infravermelha ao raio X – que é usada nos experimentos. No fim, é ela que importa – e não os elétrons em si.
1. Acelerador linear
Produz os elétrons – e os acelera praticamente à velocidade da luz.
2. Booster
Aqui, os elétrons giram até alcançar a energia necessária para passar para a próxima fase.
3. Anel de armazenamento
Na energia máxima, os elétrons, forçados por ímãs, liberam raios X nas curvas.
4. Linhas de luz
São elas que levam os raios X até as cabanas.
5. Cabanas
Dentro delas, os cientistas usam os raios X hiperenergéticos para fazer imagens microscópicas.
Cada vez que completam uma volta, os elétrons passam por estruturas chamadas cavidades de radiofrequência, que fornecem uma dose de energia renovada para compensar a que foi perdida ao longo do trajeto. Cada elétron dá 580 mil voltas por segundo no anel de armazenamento, com 518 m de circunferência. As paredes de concreto que envolvem o anel de armazenamento e o booster têm 1,5 m de espessura e protegem os cientistas da radiação.
Os raios X do Sirius entram pelo cano – literalmente. Eles se enfiam por dutos que ficam apontados para as amostras que os cientistas querem “fotografar”. Esse é o mesmo princípio de uma máquina de raio X hospitalar – só que, nela, a amostra é sua perna quebrada. Também é o princípio de um tomógrafo – que nada mais é do que um raio X capaz de fazer imagens 3D.
Além de ser muito mais rápido que um tomógrafo, o Sirius alcançará um zoom que nenhum outro tipo de máquina no mundo alcança. Por exemplo: o biólogo Matheus de Castro trabalha no Laboratório Nacional de Biociências (LNBio), também parte do CNPEM. Com a ajuda de Archilha, ele usa raios X anabolizados pelo UVX para fotografar, neurônio por neurônio, os cérebros de camundongos com doenças como Alzheimer, Parkinson ou epilepsia. O resultado é um mapa que registra como cada neurônio interage dentro do cérebro doente – o que, no futuro, permitirá desenvolver tratamentos para corrigir os problemas. Com o zoom do Sirius, vai ser possível fotografar o interior de células, e não só as conexões entre elas. Teremos retratos das menores estruturas do organismo, como mitocôndrias e ribossomos.
Matheus no interior de uma das cabanas do acelerador menor, o UVX. Na tela, ele mostra a visualização 3D do cérebro de um camundongo gerada pelos raios X do equipamento. (Yasmin Ayumi/Superinteressante)
Pesquisas inovadoras como essa só podem surgir da interação entre cientistas de diferentes especialidades. E é esse o objetivo central por trás do Sirius. “Com um acelerador de elétrons, você une desafios técnicos à possibilidade de atender uma comunidade enorme de pesquisadores”, diz José Roque, diretor do CNPEM.
De fato, a versatilidade do Sirius é quase infinita: serve para qualquer tarefa que exija um zoom homérico. A esperança é que ele dê essa mesma ampliação à ciência brasileira – que, apesar dos tropeços e cortes de verba, está prestes a dar o passo mais ambicioso da sua história.